The adipocyte: a metabolic marvel

Supporting your department

SfE BES 2017
Taking a look behind the scenes

A taster day
HOW TO KEEP YOUR CAREER SWEET

SKILLS AND EQUIPMENT
GRANTS
Don’t miss your chance!

SOCIETY
JOURNALS
An incredible resource

www.endocrinology.org/endocrinologist
A word from
THE EDITOR...

When I started at medical school, adipocytes were the ‘magnolia woodchip’ of the metabolic world. Beige but in a bad way: a boring, inert, storage cupboard that acted as a convenient filler to stop important organs jiggling together when we moved. Skip on a few decades and that world view seems risible. I am delighted that the once humble fat cell is the cover star of this edition, and that we have a cracking series of articles on all things adipose.

Justin Rochford starts off by bringing us up to speed on the basic biology of the fat cell, before Cannon and Nedergaard outline with great clarity the key physiological features of brown fat, and Mark Christian explores how adipocytes may be therapeutically modulated. Moving outside of these tissue depots, you can read a fascinating piece from Cawthorn and MacDougald on the role of fat in bone marrow, be reminded of the benefits of ‘healthy fat’ by Mann and Savage, and understand the spectrum of serious disorders that result from disorders of fat accumulation in the liver by Allison and Vacca. On top of all this, Paul Franks gives us an important insight into genetic precision as it applies to metabolism.

With a timely reminder from Antonia Brooke on the power of peer review, a very encouraging report on a career taster day and a ‘tour de force’ from Kevin Murphy, we round off the final issue of The Endocrinologist for this year.

This issue is also my final one as Editor. It’s been a blast working on the magazine and I hope we as an Editorial Board have managed to maintain the very high standards of our predecessors. Huge thanks go to all at the Society for Endocrinology for offering endless support and giving us the freedom to go all over the place with ideas. A sincere thank you is offered to all who responded to my badgering emails and messages and delivered great articles again and again.

With the new team led by Amir, Helen and Eilidh, The Endocrinologist will be in safe hands and in a cracking series of articles on all things adipose.

Thanks for reading and thanks for getting involved.

TONY COLL

The Society welcomes news items, contributions, article suggestions and letters to the Editor. We would also like to hear your feedback on this issue of the magazine.

We wish all our readers a very merry Christmas and happy new year

UPDATES AT THE ENDOCRINOLOGIST

The current Editor Tony Coll completes his term of office at the end of 2017. We are very grateful for his excellent work over the past 2 years. We look forward to working with Amir Sam as our new Editor, and Helen Simpson as our new Associate Editor from January 2018.

Kim Jonas also completes her term on the Editorial Board at the end of 2017, and we thank her for her great work on the magazine.

HAVE YOU RENEWED YOUR MEMBERSHIP YET?

Don’t let your membership lapse or you could miss out on great Society member benefits. Society member benefits are designed to help keep you at the forefront of endocrinology. A variety of funding and training opportunities are available, as well as discounts and free subscriptions for journals. Plus, new for 2018, members receive a 40% discount on Open Access publishing in Endocrine Connections.

Log in to the members’ area now to renew online and visit www.endocrinology.org/membership/member-benefits to find out more.

JOHN WASS IS NEW GIRFT CLINICAL LEAD

Getting It Right First Time (GIRFT) is a national programme to improve medical care in the NHS by reducing unwarranted variations. We congratulate John Wass (Oxford), former President of the Society for Endocrinology, on his appointment as GIRFT Clinical Lead for Endocrinology. You can find out more at www.gettingitrightfirsttime.co.uk/workstreams.

SOCIETY UPDATES

We are pleased to announce that Professor Eleanor Davies (Glasgow) and Professor Duncan Bassett (London) will be the Society’s next General Secretary and Programme Secretary. They will begin their terms of office at the next AGM.

BECOME A SOCIETY MEDIA AMBASSADOR

Share your expertise and help improve science and health reporting in the media. Media Ambassadors work alongside the Society’s press office to provide accurate and responsible media reporting of endocrinology-related topics. Find out more in our free guide: www.endocrinology.org/outreach/public-engagement/opportunities/engaging-with-the-media

Catch up on the latest news and views via the Society for Endocrinology blog

THE ENDOCRINE POST: www.endocrinologyblog.org

EARLY CAREER PRIZE LECTURES 2018: CALL FOR ABSTRACTS

Abstracts are invited by 30 April from Clinicians-in-Training and Scientists-in-Training who wish to be considered for the Society’s Early Career Prize Lectureships. The winners will receive a £750 honorarium, and will present their abstracts at the SfE BES 2018 conference on 19–21 November in Glasgow. Full details on submission are at www.endocrinology.org/grants-and-awards/prizes-and-awards/early-career-prize-lectures.

WITH REGRET

We are very sorry to announce the deaths of Senior Members Dr Ron Fletcher and Professor John Ratcliffe.

SOCIETY CALENDAR

12 March 2018
SfE NATIONAL CLINICAL CASES MEETING
London
16–17 April 2018
ENDOCRINE NURSE UPDATE
Birmingham
16–18 April 2018
CAREER DEVELOPMENT WORKSHOP
Birmingham
16–18 April 2018
CLINICAL UPDATE
Birmingham
19–21 November 2018
SfE BES CONFERENCE
Glasgow

www.endocrinology.org/events for full details

SOCIETY SUPPORTED EVENTS

1 February 2018
OBESITY UPDATE
London, UK
27 February–2 March 2018
NUCLEAR RECEPTORS: NEW ROLES FOR NUCLEAR RECEPTORS IN DEVELOPMENT, HEALTH AND DISEASE
Cancun, Mexico

GRANT AND PRIZE DEADLINES

14 March 2018
SUMMER STUDENTSHIPS
28 March 2018
PUBLIC ENGAGEMENT GRANTS
11 April 2018
REGIONAL CLINICAL CASES MEETING GRANTS
25 April 2018
PRACTICAL SKILLS GRANTS
30 May 2018
THEMED SCIENTIFIC MEETING GRANT

www.endocrinology.org/grants for full details of all Society grants and prizes
SOCIETY FOR ENDOCRINOLOGY OFFICIAL JOURNALS

Society members have free access to the current content of Journal of Endocrinology, Journal of Molecular Endocrinology, Endocrine-Related Cancer and Clinical Endocrinology via the members’ area on the Society home page, www.endocrinology.org, Endocrine Connections and Endocrinology, Diabetes & Metabolism Case Reports, the Society-endorsed case reports publication, are open access (OA) and free to all.

JOURNAL OF ENDOCRINOLOGY

Role of oestrogen in skeletal response to leptin
Leptin is important for normal bone growth, maturation and turnover. Leptin-deficient (ob/ob) mice display osteopenia, reduced longitudinal bone growth and impaired cancellous bone maturation. However, leptin deficiency also results in gonadal dysfunction, disrupting hormones which in turn regulate bone growth and turnover.

In order to unpick these processes, Turner et al. measured bone parameters in ob/ob mice receiving vehicle, leptin and leptin plus an oestrogen receptor antagonist. Mice in the last group did not differ in bone formation rate but had higher longitudinal bone growth rate and cancellous bone volume fraction compared with those receiving leptin alone.

The authors conclude that increased oestrogen signalling following leptin treatment is not necessary for the positive actions on bone, and may attenuate leptin-induced bone growth.

Read the full article in Journal of Endocrinology 233 357–367

JOURNAL OF MOLECULAR ENDOCRINOLOGY

Stem cell-derived exosomes in tissue repair and diabetic therapy
The secretion of extracellular vesicles from cells into the extracellular environment is increasingly recognised as an important modality for mediating cell-cell communication. Extracellular vesicles are secreted from most cell types and carry biological macromolecules, including RNA, lipids and proteins. The composition of extracellular vesicles changes in physiological and pathological conditions, and roles have been described in repair and regeneration. Thus, there is high interest in deciphering the functional roles of extracellular vesicles, and their potential for therapeutic use.

In this review article, Newton et al. discuss the role of stem cell-derived exosomes in tissue repair and regeneration, and their potential for the treatment of type 1 diabetes mellitus.

Read the full article in Journal of Molecular Endocrinology doi:10.1530/JME-17-0050

ENDOCRINE-RELATED CANCER

The future of MEN1 therapy and management
Management of pancreatic neuroendocrine tumours (P-NETs) remains a challenge in multiple endocrine neoplasia type 1 (MEN1). Sadowski et al. have provided an excellent overview of the literature, which helps decision-making in this field.

One take home message for me was that P-NETs <2cm and stable can be observed. Endoscopic ultrasound has a better pick-up rate than magnetic resonance imaging (MRI) for P-NETs. If seen on both modalities, MRI can be observed. Endoscopic ultrasound has a better pick-up rate than magnetic resonance imaging (MRI) for P-NETs. If seen on both modalities, MRI remains the best imaging modality for detecting liver metastases and there is no evidence that repeat surgery may be necessary.

In terms of surgery, all seem to agree that total pancreatectomy is not advisable. Whilst some advocate aggressive procedures such as distal pancreatectomy, head of pancreas enucleation and duodenectomy, there has been high risk of complications. Most surgeons favour a more conservative approach, accepting that repeat surgery may be necessary.

Again, the French seem to lead the field with national registries. Without nationwide long term observational clinical data, we will not understand which interventions work and improve outcomes for our patients.

Read the full article in Endocrine-Related Cancer 24 T243–T260

ENDOCRINE HIGHLIGHTS

A summary of papers from around the endocrine community that have got you talking.

Maternal exercise improves glucose tolerance in female offspring
Studies in humans and animals have highlighted that offspring exposed to maternal obesity are themselves at risk of obesity and type 2 diabetes in later life. In rodents, maternal exercise has been shown to have beneficial effects on the metabolic phenotype of adult male offspring.

Since males and females are differentially affected by numerous metabolic insults and disease states, Standorf and colleagues investigated the effects of maternal exercise in the presence of a maternal high fat diet on female offspring. They found that the detrimental effects of a maternal high fat diet on glucose tolerance in female offspring were ablated by maternal exercise that was carried out both before and during pregnancy. This was also accompanied by improved liver function in these offspring.

One important implication of the improvement of metabolic health in female offspring of exercised high fat fed dams is that this intervention could potentially halt the intergenerational transmission of obesity and diabetes.

Read the full article in Diabetes 66 2124–2136

©Shutterstock
Acute Cushing’s in an HIV-infected child on antiretrovirals

Dubrocq et al. describe an 11-year-old child who was being treated for perinatally acquired HIV with multiple agents: abacavir plus lamivudine (Epzicom), didanosine and ritonavir. Two months after an intra-articular injection of triamcinolone, he had symptoms of fatigue and a Cushingoid appearance. Investigations demonstrated an undetectable urinary free cortisol together with a flat synacthen test, confirming hypothalamic-pituitary-adrenal axis suppression.

Whilst not a new finding, this highlights drug–drug interactions with antiretrovirals. Although triamcinolone has a half-life of 3h, an intra-articular injection of triamcinolone may result in an increase in plasma corticosteroid levels, as they are both eliminated by CYP3A metabolism, and this interaction prolongs the half-life of triamcinolone several-fold. If a patient is on glucocorticoids, the antiretroviral regimen can be changed by replacing ritonavir with a non-protease inhibitor-based regimen to prevent this. The excellent website www.hiv-druginteractions.org lists drug interactions.

This case also emphasises the importance of taking a detailed history of glucocorticoid administration and highlights the need to manage patients safely. Whilst patients may have evidence of glucocorticoid excess they may also need stress dosing of hydrocortisone for surgery, intercurrent illness etc.

Read the full article in Endocrinology, Diabetes & Metabolism Case Reports 10 EDM176076

Percutaneous coronary intervention in stable angina (ORBITA): why all the fuss?

As a non-cardiologist, it has been interesting to observe the debate around the ORBITA study. Al-Lamee et al. conducted a well designed multicentre double blind trial of percutaneous coronary intervention (PCI) versus a placebo procedure for angina relief. Patients had severe single vessel disease with exertional symptoms. They were started on medication, then after 6 weeks randomised to PCI (105 patients) or placebo/sham procedure (95 patients).

No difference in the primary end-point, exercise time increment to symptoms, was noted after 6 weeks, suggesting drug treatment should be maximised in the management of stable angina, potentially denying a generation of interventional cardiologists a procedure to perform.

As you might imagine, much debate (see #ORBITA for highlights) and some detailed reviews of the paper and statistics have ensued. The study shows that placebo procedures are possible and trials can be designed in the same way as for pharmaceutical interventions. Some have suggested the study was underpowered to see a small number of differences in outcomes in this time period. However, the data seem to suggest drug therapy should be maximised first in stable angina, before implementing PCI with its known risks. These are quoted as a death rate of 0.63%, myocardial infarction (15%) and renal injury (13%). But what do I know? I’m a simple endocrinologist.

Read the full article in The Lancet doi:10.1161/ S0140-6736.17.32714-9

Hormonal contraception and increased risk of depression

Recent findings indicate an increased risk for hormonal contraception.

Skorudh et al. carried out a nationwide prospective cohort study of all women in Denmark with no psychiatric diagnoses, antidepressant use or hormonal contraceptive use before age 15 years, who turned 15 between 1996 and 2013. Hormonal contraception, suicide attempt, suicide and potential confounding variables were determined via nationwide registers.

Among nearly half a million women followed on average for 8.3 years, there were 6,999 first suicide attempts and 71 suicides. Use of hormonal contraception was positively associated with subsequent suicide attempt and suicide, with adolescent women experiencing the highest relative risk. The association between hormonal contraceptive use and a first suicide attempt peaked after 2 months of use.

Fat may be one of the most under-appreciated tissues in the body. It comprises lipid-laden mature adipocytes and precursor stem cells, along with other specialised cell types, all entwined in a network of extracellular matrix, blood vessels and nerves. Hence, adipose tissue is not the lump of inert blubber it may seem. Indeed, the critical roles adipose tissue plays in human health are still frequently overlooked. Instead, it can be disregarded as an irrelevance, a cosmetic imperfection or assumed to be ‘a bad thing’, when in fact it is (or should be) performing an array of remarkable and complex functions.

ADIPOSE TISSUE: A FAT LOT OF GOOD?

WRITTEN BY JUSTIN ROCHFORD

Fat may be one of the most under-appreciated tissues in the body. It comprises lipid-laden mature adipocytes and precursor stem cells, along with other specialised cell types, all entwined in a network of extracellular matrix, blood vessels and nerves. Hence, adipose tissue is not the lump of inert blubber it may seem. Indeed, the critical roles adipose tissue plays in human health are still frequently overlooked. Instead, it can be disregarded as an irrelevance, a cosmetic imperfection or assumed to be ‘a bad thing’, when in fact it is (or should be) performing an array of remarkable and complex functions.

ADIPOCYTES AS EXPANDABLE STORAGE

The importance of appropriately functioning adipose tissue is most clearly illustrated by rare individuals suffering from a generalised lack of fat, or lipodystrophy, which leads to multiple endocrine and metabolic problems.

Counterintuitively, the mechanisms underlying these problems are likely to be shared in obese individuals. This was probably first articulated by RD Lawrence as long ago as 1946.1 Describing a patient with lipodystrophy, fatty liver and diabetes, he noted that ‘No fat could be stored in the usual depots, and so it circulated in excess and produced lipaemia.’ He went on to discuss diabetes in obesity, hypothesising that this arises from ‘such an overfilling of the fat depots that they can no longer accept and absorb an excess of sugar from food.’ As such, he elegantly identified that the lack of available storage capacity is a mechanism by which a lack of fat development or the over-expansion of adipose tissue can cause similar health problems.

Hence the first, and almost certainly the most critical, job of adipose tissue is to act as a safe store for lipids. Losing this capacity leads to inappropriate lipid accumulation and dysfunction in other tissues.

Adipose tissue also provides a readily mobilised source of energy when required. This requires a complex co-ordinated response to endocrine and neuronal signals to precisely regulate nutrient uptake, processing, storage, breakdown and release.

The typical white adipocyte can measure over 0.1mm in diameter. Occupying at least 90% of its volume is a single, huge droplet of lipid. Everything else this cell must do is achieved in a thin, surrounding ‘skin’ of cytoplasm. Given the range of its abilities this is a remarkable feat.

One of the other key roles of the adipocyte is to secrete local and systemically acting endocrine factors.3 Probably best known of these are the centrally acting satiety factor leptin, and the protein adiponectin, whose levels are closely correlated with insulin sensitivity. However, many others have been described with a bewildering array of effects, some beneficial and others harmful to the metabolic health of the individual. In addition to these roles, adipose tissue can act as a mechanical barrier against injury and provide insulation from the cold.

LOCATION, LOCATION, LOCATION

Where fat accumulates in the body can have significantly different effects on health. Subcutaneous white adipose tissue is generally beneficial, whilst expansion of visceral white adipose tissue in obesity is strongly correlated with metabolic disease. However, this broad statement hides the fact that different adipose depots are highly specialised and varied in function.

For example, unlike other fat, bone marrow adipose tissue increases during calorie restriction.4 Indeed, bone marrow fat can be subdivided into at least two anatomically and functionally distinct types. Several depots of thermogenic brown adipose tissue exist, as well as cells that share some features of both white and brown adipocytes (so-called beige or brite adipocytes). Their presence in adult humans has led to intense interest in harnessing their ability to ‘burn’ stored lipids then dissipate the energy, as an
The first, and almost certainly the most critical, job of adipose tissue is to act as a safe store for lipids.

As human beings, we have a virtually constant body temperature. This is absolutely essential for our survival. The same is true for all mammals. We all know how unpleasant it is to stand waiting for a bus on a miserable November morning with wind and rain beating down on us. We start to shiver: this increases our metabolism and thus generates heat to defend our body temperatures. However, shivering is very uncomfortable and can only be maintained for a short time.

Fortuitously, if we are exposed to such cold conditions for a prolonged time, we instead start to develop a remarkable new ability, an alternative to shivering: the ability to generate heat by comfortable non-shivering means.

This comfortable heat generation occurs in brown adipocytes, cells filled with specialised mitochondria. These mitochondria can convert energy from our food directly into heat, without needing to first synthesise and then degrade ATP. They have acquired this unique ability because of the presence in the mitochondrial membranes of a protein termed uncoupling protein 1 (UCP1).

TRIGGERING THE RELEASE OF HEAT

When our body temperature is threatened, areas in the brain will be activated, located in the hypothalamus. From these areas, signals are sent down the spinal cord and ultimately to nerves that innervate the brown adipocytes in the brown adipose tissue depots. These nerves are part of the sympathetic nervous system and their stimulation leads to the release of norepinephrine in the tissue.

We seldom allow ourselves to feel uncomfortably cold, but rather stay in warm rooms or put on extra clothing; we thus live under thermoneutral conditions. Because of this, the thermogenic capacity of the brown adipocytes is normally very limited. Nonetheless, the small heat-producing anti-obesity therapy. Overall, targeting the development or function of defined adipose types could favour metabolically healthy fat tissue, with the potential to significantly improve health in obesity.

UNDER-EXPLORED DEPOTS: FAT IN FUNNY PLACES

As well as systemic effects, adipose tissues may also more specifically influence closely associated tissues. Perivascular adipose tissue can locally affect vascular function. Adipose tissue in the joints plays key roles in their maintenance, with changes in its function contributing to joint disorders such as osteoarthritis. Small depots of adipocytes exist within or adjacent to the heart, kidney, eyes and elsewhere. Teasing apart what each one does in its specific location is likely to reveal new insights regarding adipocyte function that have been missed by more generic analyses of well-studied adipose depots.

The adipocytes that comprise different depots can develop from several distinct populations of stem cells, whose nature can dictate the overall function of the tissues they generate. Understanding their identity and potential has importance beyond the function of fat, as stem cells isolated from adipose tissue have been used therapeutically to generate a variety of cell types.

Such is the complexity of the origins and functions of adipocytes between and within different depots. Some are dedicated to long term storage, some provide an on-site fuel source, whilst others are releasing endocrine signals or generating heat. The range of abilities is remarkable. Not bad for the humble fat cell.

JUSTIN ROCHFORD
Reader in Metabolic Health, Rowett Institute, University of Aberdeen, UK

REFERENCES

capacity that we have is activated by the sympathetic signal. The norepinephrine binds to β-adrenergic receptors on the mature brown adipocytes, and heat is produced. Since the capacity is initially inadequate to meet the demands of a cold stress, the sympathetic signal also interacts with stem cells in the tissue that start to proliferate and subsequently to differentiate into fully mature new brown adipocytes. This thus increases the capacity of the tissue for heat production, and the need for the uncomfortable shivering consequently diminishes.

SOURCING FUEL

To produce heat, it is necessary to have something to burn. The brown adipocytes contain stored triglycerides in numerous small lipid droplets. This fat is what is initially used for heat production; the fatty acids generated by lipolysis of the fat droplets are delivered to the mitochondria. However, this supply is limited, and it is necessary to import additional substrates from the circulation. These can be in the form of fatty acids or glucose, both of which are readily taken up and combusted by the brown adipocytes.

A ROLE IN COMBATTING OBESITY?

Since the process of heat production in brown adipose tissue thus combuts substrates, it can be envisaged that it could combat excess food that we consume. This process was suggested as long ago as 1979 to have a significant effect on regulation of body weight. Tasty diets were served to animals, and the more brown adipose tissue the animals had, the less weight they gained on the tasty diets. Remarkably they obtained more brown adipose tissue merely through eating these diets. Although this observation created considerable interest at the time, it was nonetheless thought not to be readily applicable to adult humans, since it was believed that brown adipose tissue in humans disappeared in the first years of life. However, about 10 years ago, positron emission tomography (PET) scans of adult human patients indicated that brown adipose tissue was indeed present in many adult humans.

There are two aspects here. One is the nature of the brown adipose tissue present in humans. It has been claimed that the human tissue is more similar to the rodent brite/beige adipose tissue, but this has also been said not to be the case. This may be of importance, since the different UCP1-containing adipose tissue depots have different cellular origins, and the cells may therefore be responsive to different stimulatory agents. This could influence the development of relevant therapeutic agents to both activate existing UCP1-containing cells and to recruit new such cells. The cells may therefore be responsive to different stimulatory agents. This could influence the development of relevant therapeutic agents to both activate existing UCP1-containing cells and to recruit new such cells. The other issue is whether adult humans do, in fact, have a significant set of recruitable UCP1-containing adipocytes in their classical white adipose depots. This is as yet unclear.

DISCOVERIES IN WHITE ADIPOSE TISSUE

In addition to the brown adipocytes found in the classical brown adipose tissue depots in mice, there are adipocytes within classical white adipose tissue depots that have the ability to express UCP1 and potentially become heat-generating and energy-consuming. These cells are termed brite (brown-in-white) or beige or recruitable, and the process of their development is termed ‘browning’.

In mice, in addition to enhanced sympathetic drive, numerous compounds and treatments have been shown to induce browning. In many cases, this is associated with a less marked development of body weight in animals fed a high fat, high sugar diet. To what extent it is the browning process and not acquiring more real brown adipocytes that actually leads to weight regulation is not really clear. Even more debatable is whether this browning of white adipocytes is valid in humans.

There are two aspects here. One is the nature of the brown adipose tissue present in humans. It has been claimed that the human tissue is more similar to the rodent brite/beige adipose tissue, but this has also been said not to be the case. This may be of importance, since the different UCP1-containing adipose tissue depots have different cellular origins, and the cells may therefore be responsive to different stimulatory agents. This could influence the development of relevant therapeutic agents to both activate existing UCP1-containing cells and to recruit new such cells. The other issue is whether adult humans do, in fact, have a significant set of recruitable UCP1-containing adipocytes in their classical white adipose depots. This is as yet unclear.

THE ADIPOCYTE SECRETOME

A further aspect of adipose tissue metabolism that has attracted interest recently is the so-called secretome, that is to say the array of molecules that are secreted from adipocytes under different circumstances.

For white adipocytes, the most well known is the hormone leptin, though dozens more are also secreted. The studies are still on-going in brown adipocytes. It will be of considerable interest to evaluate to what extent the brown adipocytes may influence human metabolism and physiology, not only through their thermogenic and energy-expending properties, but also by functioning as an endocrine and paracrine organ.

There are two aspects here. One is the nature of the brown adipose tissue present in humans. It has been claimed that the human tissue is more similar to the rodent brite/beige adipose tissue, but this has also been said not to be the case. This may be of importance, since the different UCP1-containing adipose tissue depots have different cellular origins, and the cells may therefore be responsive to different stimulatory agents. This could influence the development of relevant therapeutic agents to both activate existing UCP1-containing cells and to recruit new such cells. The other issue is whether adult humans do, in fact, have a significant set of recruitable UCP1-containing adipocytes in their classical white adipose depots. This is as yet unclear.

Barbara Cannon & Jan Nedergaard

Emeritus Professor & Professor, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden

‘Since the process of heat production in brown adipose tissue thus combuts substrates, it can be envisaged that it could combat excess food that we consume. This process was suggested as long ago as 1979 to have a significant effect on regulation of body weight.’
Stop and think about your bones: what images come to mind? Perhaps a skull with grinning jaws, or the strong white limbs stretching out towards your fingers and toes. You might even think of the bone marrow within them, producing the blood that courses through your veins. But this is not the whole picture, for your skeleton hides a secret: it is full of fat, and no one knows why.

AN UNSOLVED MYSTERY

This unsolved mystery is surprising. Scientists first noticed that our bone marrow contains fat-storing cells, called adipocytes, over a century ago.1 Having adipocytes in our bones might strike you as unusual, but it is not: in mammals, bone marrow adipose tissue (MAT) develops steadily after birth and accumulates rapidly during puberty such that, by the time we reach adulthood, it can comprise up to 70% of bone marrow volume – this represents over 8% of total fat mass.2

MAT is not distributed uniformly around the skeleton, but instead predominates in the arms and legs. This peripheral MAT develops early after birth and is rarely depleted, and thus has been termed ‘constitutive MAT’ (cMAT).3 In contrast, more central sites, such as the spine, pelvis and sternum, as well as more proximal regions of the long bones, contain less MAT and more haematopoietic red marrow (see Figure). At these sites, marrow adipocytes are more diffuse and tend to increase or decrease in response to environmental or pathological factors; hence, this depot has been dubbed ‘regulated MAT’ (rMAT).4

Other properties of marrow adipocytes also vary across these skeletal sites, with potential implications for the impact of MAT on health and disease.5,6 Indeed, MAT further increases with ageing and in diverse clinical conditions, including skeletal, metabolic and haematological diseases (Figure). Consequently, MAT is now attracting considerable interest as a potential player in the development of numerous diseases. However, unlike white and brown adipose tissues (WAT and BAT respectively), the study of MAT has been relatively limited. Consequently, the physiological and pathological functions of MAT remain poorly understood.7 So, what is the function of MAT, and how might it affect human health?

BAD TO THE BONE?

Increased bone marrow adiposity (BMA) is associated with lower bone mineral density and increased skeletal fragility, for example in osteoporosis, ageing and oestrogen deficiency. This has motivated research into how MAT has an impact upon skeletal integrity.

One possibility is that bone marrow adipocytes share the same skeletal stem cell precursor as bone-forming osteoblasts, in which case MAT accumulation might occur at the expense of osteoblast development.8 However, whilst this is true during embryonic development, it isn’t firmly established if this common precursor persists through to adulthood to contribute to postnatal tissue maintenance.

Another possibility is that bone marrow adipocytes secrete local factors that directly impair bone formation and/or stimulate bone resorption, thereby increasing fracture risk.9 Intriguingly, such paracrine actions might also promote the growth of tumours within the bone, whether primary myeloid/lymphoid cancers, or metastases from elsewhere (Figure).10,11

Is MAT accumulation therefore bad for bone health? Unfortunately, it is too early to tell. Although increased MAT may be associated with elevated fracture risk, increased MAT is not always associated with bone loss. The potential impact of MAT on skeletal tumour development

The anatomical distribution, clinical associations and potential functions of bone marrow adipose tissue (MAT).

MAT distribution

- □ MAT
- ■ Red marrow

MAT expansion

- △ cMAT
- ○ rMAT

Endocrine and metabolic functions

- Adiponectin production
- LMMW
- MMW
- HMW

Skeletal functions

- Myeloma
- Vertebral bone metastases
- Myeloma/lymphoid cell bone metastases

Clinical associations

- Ageing
- Anorexia/calorie restriction
- Obesity, diabetes (rodents>humans)
- Hyperlipidaemia
- Growth hormone deficiency (in rats)
- TZD, FGF21 (in mice)
- Glucocorticoids
- Oestrone deficiency
- Other factors?
also remains to be fully understood. Given the public health challenges posed by osteoporosis, skeletal cancers and age-related diseases, elucidating these functions of MAT is a major goal of ongoing research.

HAEMATOLOGY

The key function of bone marrow is in blood cell production, so it is unsurprising that many of the earliest studies of MAT were pursued from a haematopoietic perspective. Generally, decreased BMA is associated with increased haematopoiesis, suggesting a suppressive effect of MAT.

Supporting this possibility, a landmark 2009 paper revealed that blocking MAT accumulation enhances haematopoietic recovery after bone marrow transplantation. This has important translational implications: many recipients of bone marrow transplants show poor long-term recovery, and therefore suppressing marrow adipogenesis might represent a novel therapeutic approach.

However, not all data support a negative effect on haematopoiesis. Indeed, recent research suggests that, in the context of bone marrow transplants, marrow adipocytes secrete a molecule called stem cell factor, through which they promote haematopoiesis and the regeneration of haematopoietic stem cells. Thus, as for the putative effects of MAT on bone, its impact on haematopoiesis is proving to be more complex than first suspected (Figure).

BEYOND THE BONE: METABOLIC AND ENDOCRINE FUNCTIONS

Although MAT’s functions within the bone and marrow remain to be conclusively established, it seems clear that marrow adipocytes can influence skeletal homeostasis and haematopoiesis by secreting locally acting factors. But does MAT, like WAT, also secrete endocrine products to exert systemic metabolic effects?

Recent studies from our labs and others support this possibility. Numerous reports show that bone marrow adipocytes produce leptin, the prototypical adipocyte-derived hormone that has a major influence over energy homeostasis, inflammation and reproductive function. We have found that, as in WAT, leptin expression in MAT is suppressed in response to decreased caloric intake, demonstrating that MAT and WAT share common mechanisms to regulate their endocrine functions.

Whether MAT contributes to circulating leptin remains unknown, but its function as a source of other endocrine factors is becoming clear. A major focus of our research has been on MAT as a source of adiponectin, the other major hormone produced by adipose tissue. Despite this adipose tissue, circulating adiponectin is decreased in obesity and increased in the other major hormone produced by adipose tissue. Despite this adipose tissue, circulating adiponectin is decreased in obesity and increased in MAT as a source of adiponectin, its function as a source of other endocrine factors is becoming clear. A major focus of our research has been on MAT as a source of adiponectin, the other major hormone produced by adipose tissue. Despite this adipose tissue, circulating adiponectin is decreased in obesity and increased in the other major hormone produced by adipose tissue.

To answer this question, we combined clinical observations with studies in a unique mouse model that resists MAT formation. These approaches revealed that, during caloric restriction, MAT expansion is required for the full increases in circulating adiponectin, a conclusion since supported by our more recent research. MAT expansion during caloric restriction also appears to influence metabolic adaptations within skeletal muscle. It is unclear if this is via adiponectin or other endocrine factors, but it underscores the potential of MAT to exert systemic effects.

FUTURE MATTERS

Over the past decade, the burgeoning field of MAT research has hugely advanced our understanding of MAT formation and function. MAT is no longer considered an inert ‘space filler’ within the bone marrow, but an active tissue with diverse implications for skeletal remodelling, tumour progression, haematopoietic regulation, and systemic endocrine and metabolic functions. Nevertheless, the study of MAT still falls far behind that of WAT and BAT, and therefore many key questions remain to be firmly answered.

Thankfully, a broad scientific community is now coalescing around MAT research. The first international meeting on BMA was held in Lille, France, in 2015, with successful follow-up meetings in 2016 and 2017. At the 2017 BMA meeting in Lausanne, Switzerland, attendees voted to establish the International Bone Marrow Adiposity Society, which aims to advance knowledge of BMA (www.bma-society.org). These developments highlight the increasing interest and enthusiasm for study of MAT. Therefore, we can be confident that future research efforts will continue to unlock fundamental knowledge of MAT biology, both as an endocrine organ and beyond.

WILLIAM P CAWTHORN

Chancellor’s Fellow and MRC Career Development Fellow, University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, UK

ORMOND A MACDOUGALD

John A Faulkner Collegiate Professor of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA

REFERENCES

15. Cawthorn WP et al. 2014 *Cell Metabolism* 20 368–375.
EXPLORING INDIVIDUALITY
Lifestyle interventions that induce weight loss for diabetes prevention are most effective in people who are glucose intolerant (i.e. whose post-prandial glucose is elevated), and less effective in those with isolated fasting glucose. This is probably due to the underlying causes of these two types of dysglycaemia: the former is attributable mainly to peripheral insulin resistance, which can often be ameliorated through weight loss, whereas the latter is primarily the consequence of excessive hepatic gluconeogenesis.

Nevertheless, sustained hypocaloric diets (around 800kCal/day) can also profoundly improve fasting glycaemia too, even in people with manifest diabetes, by virtue of reductions in liver fat content and corresponding improvements in liver insulin sensitivity. The problem is that long term adherence to such diets is obviously difficult and only highly motivated patients are likely to benefit from this strategy.

The potential to improve the precision of lifestyle interventions is likely to far outweigh the potential for drug therapies in type 2 diabetes, primarily because diet and exercise have wide-ranging effects on energy metabolism with few, if any, serious side effects in most patients.
because diet and exercise have wide-ranging effects on energy metabolism
with few, if any, serious side effects in most patients. By contrast, most anti-
diabetic drugs target specific pathways and cannot be tolerated or cause
adverse events in some patients.

The notion of optimising lifestyle interventions by designing these to fit
the biological characteristics of an individual patient is predicated on there
being high between-person variability and low within-person variability
in the response to the components of the intervention. The measure of
‘response’ also needs to be clinically relevant, for which biomarkers
with good predictive ability should be available, safe and scalable, if the
approach is to be used in the public health setting.

There are multiple reports of high between-person variability in response
to diet and exercise interventions, but it is often impossible to separate
true between-person response variability from error, and few studies
have demonstrated that the response estimates are consistent within an
individual over time. Indeed, much of the apparent variability in response
to lifestyle interventions is likely to be artefactual, as discussed elsewhere.
Nevertheless, three recent studies of diet9,10 and exercise11 provide
compelling evidence that an individual’s characteristics influence the
metabolic response to diet and exercise.

‘Harnessing individual-level biological variant data to optimise diets has already proved valuable for the regulation of blood glucose, and may prove of further value for other diabetes-related traits, including weight change.’

THE IMPACT OF DIET

In people with diabetes, minimising variability in glycaemic response to
food is a major feature of the patient’s self-care regime, as very high glucose
concentrations can be harmful to the insulin-producing (β-) cells in the
pancreas and to the vasculature, and very low glucose can lead to loss of
consciousness.

In the first of the two diet studies,9 diet patterns and glycaemic response
were observed in 800 adults during 1 week. Participants wore continuous
glucose monitors, detailed information on diet was collected via a mobile
app, and metagenomic sequences were obtained from stool. Within the
47,000 meals consumed during the period, one standardised meal each day
(including 50g carbohydrate) was provided to each participant.

The authors observed high between-person variability in response, but
relatively low within-person variability, suggesting that the glycaemic
response to food is driven by personal factors. They then derived a machine
learning algorithm to predict glycaemic response to each meal based on the
data collected in the observational phase, and designed personalised diet
interventions, to which 26 adults were randomised in order to demonstrate
that a person’s glucose variation can be manipulated by personalising their
diets. A core feature of the algorithm was the gut microbiome sequence
data.

In a follow-up study, the same group undertook a randomised trial of white
and sourdough bread to determine whether this influenced clinical response
parameters, including blood glucose excursions after a 7.5g oral glucose
load.12 Although no difference was observed in the effects of the different
bread types, high variation in glycaemic response to bread was observed
between individuals, with relatively low inter-individual variation. As in the
earlier trial, the authors were able to derive algorithms using microbiome
sequence data to predict an individual’s glycaemic response to bread.

RESPONSE TO EXERCISE

There has been much written about exercise responders and non-
responders and the biological basis to these adaptions.17 One of the
earliest published analyses supporting this idea came from the HERITAGE
Study, an exercise intervention trial in which participants were assessed at
the beginning and end of a 20-week exercise intervention.18

The authors reported large inter-individual variability in response to
exercise for aerobic fitness adaptation, although the design of the study
limited the extent to which the key sources of variability (i.e. biological
variation, compliance and technical error) could be distinguished. Because
the study had only one follow-up assessment (at the end of the trial), the
within-individual variability in response could not be accurately quantified.
Nevertheless, many have interpreted these results to mean that some people
do not respond to exercise (we discuss some of the caveats underlying this
interpretation elsewhere).

To test the ‘non-responder’ hypothesis, Montero and Lundby undertook
a 6-week exercise intervention, during which aerobic fitness was repeatedly
assessed.19 The authors eloquently demonstrated that some participants
were highly responsive to exercise, whereas others responded with only
small improvements in fitness, yet none of the participants was a true
‘non-responder’.

Thus, amongst the vast literature on the biological basis of individual
responses to diet and exercise, there are a few well-conducted trials that
provide strong evidence that response predictors are personal, and in some
instances quantifiable. Harnessing individual-level biological variant data
to optimise diets has already proved valuable for the regulation of blood
glucose,9,10 and may prove of higher value for other diabetes-related traits,
including weight change. Such applications could prove valuable when
lifestyle medicine is used to prevent or treat type 2 diabetes and obesity.

PAUL W FRANKS
Genetic and Molecular Epidemiology Unit, Lund University, Skåne
University Hospital, Malmö, Sweden and Department of Nutrition,
Harvard School of Public Health, Boston, MA, USA

REFERENCES

12. Spilsbury C & Rankinen T 2001 Medicine & Science in Sports & Exercise
 Suppl 6 8446–8451, discussion S452–S453.
LIPODYSTROPHY:
LIFE WITHOUT FAT

WRITTEN BY JAKE P MANN & DAVID B SAVAGE

Fat receives a lot of bad press, but patients with lipodystrophy exemplify its critical physiological importance. Lipodystrophy is characterised by the functional failure of fat, usually associated with its anatomical absence (lipoatrophy). Though a comparatively rare condition, it is relevant to many endocrinologists/diabetologists, as it highlights the metabolic role of fat in surplus energy storage and has contributed to a deeper understanding of human insulin resistance, non-alcoholic fatty liver disease, and type 2 diabetes.

Lipodystrophies are a relatively heterogeneous group of conditions that can be broadly classified into congenital or acquired, and partial (limited to certain areas of the body) or generalised.1,2 Congenital [generalised] lipodystrophies are the most extreme forms.3 They are autosomal recessive disorders that typically present in children who have almost no adipose tissue. In addition, there are several forms of familial partial lipodystrophy, most of which are inherited in an autosomal dominant fashion. These are often said to present around puberty, but this may be related to the fact that they become more clinically obvious in girls at this stage, as they frequently manifest as a lack of lower limb and femorogulateal fat.

Acquired partial lipodystrophy (APL) is more common, typically progresses in a cephalocaudal pattern, and is not usually associated with metabolic problems (though it can be) but it is often associated with C3 nephritic factor and glomerulonephritis. APL may occur secondary to drugs (for example, anti-retrovirals in treatment of HIV) or in association with other autoimmune disorders. Similarly, acquired generalised lipodystrophy is often associated with other autoimmune problems.

PRESENTATION OF LIPODYSTROPHY

The lack of subcutaneous fat in congenital generalised lipodystrophy is immediately obvious: patients may appear strikingly muscular and progeriod due to reduced facial fat. However, partial lipodystrophy may not be immediately apparent, and the lack of adipose may be most evident on the thighs, buttocks and upper arms.4 Other signs that may be found are acanthosis nigricans (reflective of severe insulin resistance), hepatomegaly (due to hepatic steatosis) with splenomegaly (from portal hypertension) and, in some cases, pseudonecrotic features. Women frequently present with manifestations of polycystic ovary syndrome.

Biochemically, patients have all the features of the metabolic syndrome: hyperglycaemia, dyslipidemia and raised liver enzymes due to fatty liver. They have high insulin levels, driven by severe peripheral insulin resistance, and low leptin and adiponectin levels (variable depending on the extent of lipodystrophy), due to a lack of functional adipocytes and severe insulin resistance.

Patients with lipodystrophy often display the same metabolic features that are expected in obese people: type 2 diabetes, premature coronary artery disease, stroke and non-alcoholic fatty liver disease.

Patients with lipodystrophy have severely limited adipose expandability; therefore this is manifest at a normal or even low body mass index. The ‘metabolically healthy’ obese continue to expand their adipose storage capacity, but if and when they reach their ‘genetically defined’ limit, they will manifest type 2 diabetes and fatty liver. It has very recently been shown that adipose expansion capacity is genetically determined, varies in adults, and is associated with dyslipidemia and hyperinsulinaemia.5 Some adipose deposits are of particular importance, particularly the thighs and buttocks, which is supported by evidence that a low hip circumference (separately from a high waist circumference) is a marker of metabolic risk.

TREATMENT

Medical treatment is similar to that of obese patients with the metabolic syndrome, with dietary restriction the mainstay of treatment. Patients often require high doses of insulin (>2IU/kg per day, for example) to achieve euglycaemia. However, this can be significantly improved if leptin therapy is initiated6 in those with low leptin levels (a specific cut-off has yet to be agreed, but levels below 5μg/l in men and 10μg/l in women can be used as a rough guide). Leptin, whilst not yet approved in the EU, is likely to become the first-choice therapy in patients with generalised lipodystrophy, whereas its use in patients with partial lipodystrophy requires further investigation.

Bariatric surgery has also been shown to be very effective in familial partial lipodystrophy, where patients are hyperphagic and excess intake accelerates their metabolic complications. Common causes of death are cardiomyopathy, macrovascular atherosclerotic disease, and cirrhosis secondary to fatty liver.

UNDERLYING PHYSIOLOGY

Mammals have evolved to cope with sizable fluctuations in nutrient supply by storing excess energy in macromolecules. For a non-obese 70kg man, liver and muscle glycogen stores hold only about 6MJ of energy, whereas adipose tissue stores contain about 600–800 MJ as triacylglycerol (around 100–fourfold more than glycogen stores).

Adipocytes are ‘professional’ storage cells that contain triacylglycerol within a huge single lipid droplet. However, there is a limit to their expandability, both in terms of cellular hypertrophy and hyperplasia. Once surpassed, excess lipid accumulates in so-called ectopic sites such as the liver and muscle. These tissues are less well-adapted to cope with excess lipid, which tends to impair insulin action.6 This hypothesis is often referred to as the ‘adipose overflow hypothesis’.

Patients with lipodystrophy often display the same metabolic features that are expected in obese people: type 2 diabetes, premature coronary artery disease, stroke and non-alcoholic fatty liver disease.’

LESSONS LEARNT FROM LIPODYSTROPHY

The most important principle gleaned from lipodystrophy is that weight loss is the most effective treatment for the metabolic syndrome; as it reduces the energetic load on adipocytes. This is amply demonstrated by the dramatic clinical benefits, including reversal of type 2 diabetes, associated with extreme caloric restrictive diets8 or bariatric surgery.9
It is also the mechanism underlying the action of peroxisome proliferator-activated receptor (PPAR) agonists such as the thiazolidinediones (TZDs), which expand adipocytic storage capacity. Patients often gain weight (and fat mass) in response to TZDs, but that’s how they work. Fat should not be seen as the enemy, but increasing evidence suggests that its capacity to expand in response to sustained excess energy intake is finite and, when exceeded, serious metabolic disorder ensues.

‘Many obese patients with the metabolic syndrome mimic lipodystrophy because their adipocytes are ‘full’, and the best treatment is to ‘empty’ them by weight loss.’

Therefore, whilst lipodystrophy is relatively rare, it highlights the importance of ‘healthy fat’. Making the diagnosis is very useful as it may inform predictive genetic testing in families and therapeutic decisions which can be life-transforming, at least in terms of metabolic control. Many obese patients with the metabolic syndrome mimic lipodystrophy because their adipocytes are ‘full’, and the best treatment is to ‘empty’ them by weight loss.

JAKE P MANN
Clinical Fellow in Paediatrics, Institute of Metabolic Science and Department of Paediatrics, University of Cambridge, UK

DAVID B SAVAGE
Wellcome Trust Senior Clinical Fellow, Institute of Metabolic Science, University of Cambridge, UK

REFERENCES

THE BROWNING OF WHITE FAT

WRITTEN BY MARK CHRISTIAN

The process of ‘browning’ white adipose tissue (WAT) has become a key focus area in research, due its fat burning potential for obesity treatment.

Functional brown adipose tissue (BAT) has been identified in adult humans by positron emission tomography–computed tomography (PET-CT) scans, as its high requirement for energy substrate instigates the rapid uptake of radiolabelled glucose. The substantial energy needs of BAT are a consequence of its unique property of heat production by adaptive thermogenesis. This process mediates the breakdown of energy substrates without the generation of ATP. Therefore, energy dissipation by BAT has the capacity to control obesity by diverting excess fat into heat production.

Adipose tissue comes in two main types: WAT, which is the primary site of energy storage, and BAT, which stores lower levels of fat and can be activated to oxidise fatty acids to maintain body temperature. These tissues are composed mainly of white and brown adipocytes respectively.

Whereas brown adipocytes contain many mitochondria and many lipid droplets (multilocular), white adipocytes have few mitochondria and a single large lipid droplet (unilocular). Importantly, uncoupling protein 1 (UCP1) is present exclusively on the inner mitochondrial membrane of brown adipocytes where it uncouples the respiratory chain from ATP generation.

DYNAMIC ADIPOSE TISSUE

Adipose tissue is incredibly dynamic and responds to stimuli including external environmental and dietary cues. The plasticity of WAT is demonstrated by a large increase in the number of brown adipocyte-like cells, termed beige or brite (brown-in-white) adipocytes, upon sustained cold exposure or direct β-adrenergic activation.

The WAT-resident brite adipocytes induced by the ‘browning’ stimulus are phenotypically similar to the classical brown adipocytes in BAT, having many mitochondria, multilocular lipid droplets and expressing UCP1. Evidence suggests that brite adipocytes may contain comparable amounts of UCP1 to BAT-resident brown adipocytes, indicating that they may have similar thermogenic capacities.
New Approaches for Browning WAT

The discovery of brite adipocytes in humans has attracted research interest in identifying pharmacological and nutritional browning activators with metabolic benefits. Strategies include up-regulating sympathetic input between muscle, BAT and WAT, orchestrating cold-induced adaptive thermogenesis.

Studies in humans have shown that highly β3-selective adrenergic agonists such as mirabegron, a drug approved for treatment of overactive bladder, may increase energy expenditure with greatly reduced cardiovascular side effects compared with other sympathomimetic drugs. Phytochemicals such as the flavonoid curcumin found in turmeric promote browning. Also, dietary capsaicin and capsinoids promote WAT browning through activation of vanilloid receptors. Similarly, fucoxanthin, from algae, and fish oil (rich in ω3 polyunsaturated fatty acids) can also induce UCP1 expression in WAT by upregulating β3-adrenergic receptor expression and consequently enhancing WAT sensitivity to adrenergic stimulation in adipocytes.

Novel approaches include re-examining the browning actions of drugs that have already been approved, such as exenatide and sildenafil (originally designed for type 2 diabetes and erectile dysfunction treatment respectively), which are subject to testing of their browning effect in phase 4 clinical trials. Such novel therapeutic strategies have the potential to treat obesity and the range of associated diseases that represent a profound burden on healthcare systems.

Mark Christian
Associate Professor, Warwick Medical School, University of Warwick, UK
FAQs (FAT ACCUMULATION AND QUALITY) IN NON-ALCOHOLIC STEATOHEPATITIS

WRITTEN BY MICHAEL ALLISON & MICHELE VACCA

The first question you may ask is ‘Why are we discussing non-alcoholic steatohepatitis (NASH) in The Endocrinologist?’ Fatty liver (steatosis) is found in 15–30% of the adult population. The commonest cause is insulin resistance, which is associated with metabolic syndrome and type 2 diabetes. An accumulating body of evidence links adipose tissue expandability defects and inflammation with non-alcoholic fatty liver disease (NAFLD); the metabolic milieu (glucose and insulin) drives enhanced de novo lipogenesis within hepatocytes and the accumulation of lipotoxic intermediates, thereby exacerbating liver damage.

WHAT ARE THE TERMINOLOGY, DIAGNOSIS AND CONSEQUENCES?
NAFLD is the term describing the whole spectrum of this condition. Steatosis describes simple fat accumulation within hepatocytes, whereas NASH refers to the presence of fat associated with inflammatory infiltrates and fibrosis (see Figure).

Differentiating between ‘benign’ steatosis and NASH remains difficult. Despite extensive work on imaging tools and non-invasive biomarkers, the gold standard continues to be liver biopsy. Natural history data indicate that NASH, as opposed to steatosis, can progress to advanced liver disease, with risk of liver cancer and liver failure necessitating liver transplantation. The relevance of NASH as a cause of cirrhosis is demonstrated by the fact that NASH-related cirrhosis will soon become the commonest indication for liver transplantation.

DOES YOUR PATIENT HAVE SIGNIFICANT LIVER DISEASE?

Given the prevalence of NAFLD in the population, one of the major challenges is determining who has NASH with significant fibrosis. A number of staging algorithms based on blood tests and simple clinical parameters have been developed with this in mind, but those currently available are imperfect.

Simple tools such as FIB-4 (Fibrosis-4) or the NAFLD Fibrosis Score, which incorporate factors such as age, AST (aspartate aminotransferase), ALT (alanine aminotransferase) and platelet count, as well as the presence/absence of diabetes or impaired glucose tolerance, have been found to be most useful as a means of excluding significant NASH in patients with a score below a defined threshold. Additional methods of assessing individuals within the NAFLD spectrum include imaging modalities determining liver stiffness, most commonly using transient electrography (e.g. Fibroscan); this correlates with the amount of fibrosis.

Experts in the field recommend focusing on patient groups at high risk of significant liver disease, rather than assessing people based on the abnormality of liver function tests. Patients with diabetes are at significant risk of having active NASH with progressive fibrosis, as well as a twofold increased risk of liver cancer. As such, assessment of liver disease should be introduced into the regular assessment of type 2 diabetic patients in the same way that other comorbidities (e.g. retinopathy, neuropathy and nephropathy) are routinely assessed. Close links between primary and secondary care diabetes services and hepatology services, and shared pathways for the management of these subjects, are thus highly recommended.

IS THERE AN EFFECTIVE TREATMENT?

Having previously been a frustrating area to treat, long term phase 3 studies are currently being undertaken to examine the effectiveness of agents including other glucagon-like peptide-1 receptor agonists, farnesoid X receptor agonists, peroxisome proliferator-activated receptor (PPAR) α/δ agonists, and anti-inflammatory and anti-fibrotic drugs. In addition, other molecules in earlier phase studies are targeting metabolic and inflammatory processes. This rapidly changing landscape means that it will be increasingly important to diagnose/stage NASH.

Having previously been a frustrating area to treat, long term phase 3 studies are currently being undertaken to examine the effectiveness of agents including other glucagon-like peptide-1 receptor agonists, farnesoid X receptor agonists, peroxisome proliferator-activated receptor (PPAR) α/δ agonists, and anti-inflammatory and anti-fibrotic drugs. In addition, other molecules in earlier phase studies are targeting metabolic and inflammatory processes. This rapidly changing landscape means that it will be increasingly important to diagnose/stage NASH.

Michele Vacca
NASH Service, Liver Unit, Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK

Michael Allison
NASH Service, Liver Unit, Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK

Stages and pathophysiology of NASH (HCC, hepatocellular carcinoma). ©M. Allison & M. Vacca

THE ENDOCRINOLOGIST | WINTER 2017 | 17
Like me, you have probably been giving serious thought to the representation of the life sciences in popular song.

There are, of course, many easy parallels to draw between the pop music business and science. Pop music was once famously full of man-child mavericks, delighted to defenestrate televisions, to dunk Daimlers in swimming pools, and to repeatedly overindulge and overdose. But rather than being the new rock and roll, science got there first.

Pick up any book on the history of science and marvel at how past (almost always male) researchers happily dosed themselves with Helicobacter pylori (to demonstrate how stomach ulcers were caused) or LSD (to enjoy the bike ride home), and forced needles under their eyeballs (to investigate the perception of colour) or themselves into decompression chambers (to study the effects of various gases).

JBS Haldane (for indeed, ‘twas he who entered the decompression chamber) subsequently suffered from seizures and burst eardrums, but commented that ‘The drum generally heals up ... if a hole remains in it, although one is somewhat deaf, one can blow tobacco smoke out of the ear in question, which is a social accomplishment.’

We rarely encounter such cavalier attitudes nowadays. Pop musicians and scientists typically own intact televisions and eardrums, and both industries often stand accused of encouraging unoriginal conformists and yes-men, to the detriment of true creatives.

Pop music and science can both also be said to have very poorly mapped out career structures, and might both be described as ‘formulaic’, albeit in different senses.

These parallels have sadly not fostered the culture of mutual respect between disciplines that one might expect. Pop simply does not give biology the props it deserves.

‘Rather than being the new rock and roll, science got there first.’

Sure, prog rock titans like to steal scientific ideas upon which to hang concept LPs. For example, Rush’s ‘Natural science’ paddles through both biology and astronomy, describing how the ebbing tide ‘...leaves a trail of tidal pools/In a short-lived galaxy’ in which live ‘...busy little creatures/Chasing out their destinies’. Less pompous, but only marginally less inherent pulsatility of many endocrine systems) ‘my hormones are jumpin’ like a disco’, that, in fact, hormones don’t jump?

As regards specific hormonal systems, the male hypothalamo-pituitary-gonadal axis has the biggest fan base. In the elegant ‘Where did my spring go?’ by the Kinks, Ray Davies plaintively enquires ‘Where did my hormones go?’ and then, mentally connecting this to the role of dihydrotestosterone in male pattern baldness, asks ‘Where did my hair go?’ Artists as diverse as Sia, Bush and The Descendents have songs named ‘Testosterone’, and rap and grime braggadocio is awash with examples, (to demonstrate how stomach ulcers were caused) or LSD (to enjoy the bike ride home), and forced needles under their eyeballs (to investigate the perception of colour) or themselves into decompression chambers (to study the effects of various gases). when they quickly follow ‘We do chemistry, biology and maths...’ with ‘I want poetry and music and some laughs’.

Who would quibble with Motorhead’s Lemmie, when he grunts ‘Dance, get your hormones fired’, that he does not apprehend the complexity of hormone release kinetics? When Christine Aguilera has made the effort to comment on the time course of endocrine effects, what kind of nit-picker would suggest that her understanding of relativity is in need of a polish when she sings of ‘hormones racing at the speed of light’? And who dares to suggest to Missy Elliott that, when she boasts (in obvious reference to the inherent pulsatility of many endocrine systems) ‘my hormones are jumpin’ like a disco’, that, in fact, hormones don’t jump?

As regards specific hormonal systems, the male hypothalamo-pituitary-gonadal axis has the biggest fan base. In the elegant ‘Where did my spring go?’ by the Kinks, Ray Davies plaintively enquires ‘Where did my hormones go?’ and then, mentally connecting this to the role of dihydrotestosterone in male pattern baldness, asks ‘Where did my hair go?’ Artists as diverse as Sia, Bush and The Descendents have songs named ‘Testosterone’, and rap and grime braggadocio is awash with examples, from Dizzee Rascal to Rick Ross to Method Man, equating manliness with testosterone, asking ‘Where did my hair go?’ When they quickly follow ‘We do chemistry, biology and maths...’ with ‘I want poetry and music and some laughs’.

Typically, however, artists take their cues from Sam Cooke, who seems wistfully proud when he croons ‘Don’t know much biology’ (or ‘about a science book’, for that matter). Belle and Sebastian show their artsy bias when they quickly follow ‘We do chemistry, biology and maths...’ with ‘I want poetry and music and some laughs’.

How can we convince the world of pop that science and laughs are not mutually exclusive? Perhaps we can make use of that most rock and roll of specialties, endocrinology. The age-old obsession of pop with the young, exciting, sex-obsessed and devil-may-care is usefully encapsulated in the popular use of the word ‘hormones’.

As regards specific hormonal systems, the male hypothalamo-pituitary-gonadal axis has the biggest fan base. In the elegant ‘Where did my spring go?’ by the Kinks, Ray Davies plaintively enquires ‘Where did my hormones go?’ and then, mentally connecting this to the role of dihydrotestosterone in male pattern baldness, asks ‘Where did my hair go?’ Artists as diverse as Sia, Bush and The Descendents have songs named ‘Testosterone’, and rap and grime braggadocio is awash with examples, from Dizzee Rascal to Rick Ross to Method Man, equating manliness with their own circulating levels of sex steroids.

However, misapprehensions remain. When RZA of the Wu Tang Clan claims ‘My testosterone stimulate her oestrogen’ we can only assume that he, no doubt familiar with the aromatase enzyme, has become confused over its precise role. We in the endocrine community must continue to work hard to ensure endocrinology is as accurately represented in chart topping hits as it is in our own scientific papers. To paraphrase Woody Guthrie, we must convince the public that ‘This gland is your gland’...

The age-old obsession of pop with the young, exciting, sex-obsessed and devil-may-care is usefully encapsulated in the popular use of the word “hormones”.

Kevin G Murphy
Division of Endocrinology and Metabolism, Department of Medicine, Imperial College London, UK
Renewing that’s plain sailing

It’s time to renew your Society membership for 2018 and it takes just a few simple steps.

All you have to do is log into the Members’ Area and click renew!

Discover some of the great benefits available to you in 2018!

www.endocrinology.org/membership
The Society’s Interdepartmental Peer Review scheme is a voluntary, supportive and non-confrontational review of endocrine services. The scheme was inspired by John Wass (Oxford) when he was Chair of the Society for Endocrinology’s Clinical Committee in 2002, set up by the Society for Endocrinology, led by John Bevan (Aberdeen) and then Petros Perros (Newcastle upon Tyne).

The scheme allows both a subjective and objective look into a centre’s achievements and difficulties. The idea of the programme is to ensure safe and sustainable services and facilitate improvements, negotiating a difficult financial climate. It focuses on the clinical care process and organisational aspects of care, and promotes examples of exceptional practice.

The current peer review programme is undergoing change, and I have been given the opportunity to continue the work of Petros Perros to develop the programme further with the assistance of the peer review team.

WHAT ARE THE ADVANTAGES OF PARTICIPATING?

Peer review can help support the changes that are most wanted by endocrine units, paying attention to local NHS priorities for change. It is an opportunity to reflect on current practice, build morale within the team and recognise the centre’s achievements, whilst benchmarking against national data. It also provides a platform to reassure patients that there has been external validation and to promote the specialist service within the trust. Appraisal and sharing ideas with experienced clinical endocrinologists are important, and 100% of centres that have participated have found it useful.

With an ambition to review all specialist endocrinology centres in the UK, there is a great opportunity for exchanging ideas, which will help strengthen the specialty, improve networking and promote good practice.

WHAT IS THE FUTURE OF PEER REVIEW?

It is recognised that centres offer a range of routine, specialist and super-specialist endocrinology and don’t always follow a binary model between the nearest ‘tertiary centre’ and ‘secondary care’. To reflect this continuum, the traditional model of pairing a ‘tertiary’ centre with a ‘district general hospital’ has been replaced to allow single centres to be reviewed.

The self-assessment questionnaire has been streamlined to acknowledge the time pressures in current clinical practice, and there is a timeline of up to 3 years for planning visits, to allow an adequate period for preparation and identifying appropriate reviewers. The focus has changed to put more emphasis on clinical outcomes, and links to other quality measures are being established. There will also be development of a platform through the Society for Endocrinology to share resources and experiences and promote good practice and ideas.

WHAT DETERS CENTRES FROM BEING REVIEWED?

There continues to be enthusiasm about being peer reviewed and the importance of the process. The main concern about participating has been the amount of time and hard work that are perceived to be involved in gathering the data, in services which are already stretched. The self-assessment questionnaire has been refined to reflect this. Tristan Richardson, who has recently been through the process in Bournemouth, said that data gathering took around 8 hours for two consultants, plus nurse time and support from the management team. Again, having a focus within a realistic time frame allows the data to be gathered without tight deadlines, and the benefits of being reviewed make it worth the effort.

There is also a misconception that centres must ‘put their house in order’ before they are peer reviewed. Reviewing the services when a newly recruited consultant comes to the department can help strategy. Setting a future timeline helps focus on the necessary changes and a realistic time to achieve them. Even if targets are not met prior to peer review, the report can help reflect some of the difficulties that the departments have struggled with, as a mechanism for helping achieve change.

WHO HAS BEEN PEER REVIEWED?

The hospitals that have been peer reviewed are shown at <www.endocrinology.org/clinical-practice/interdepartmental-peer-review>. Their catchment areas range from 280,000 to 2.5 million, and they see between 267 and 1,530 new referrals per year. Of the centres reviewed, 100% felt it was worthwhile and would volunteer again. There was a similar level of satisfaction from reviewers and a great deal to be learnt from sharing practice.

PEER REVIEW FEEDBACK

- “I believe the visit was very important – our MD and CEO used the report to lobby primary care trusts whenever they had a chance.”
- “It actually took less time than I thought to do the self-assessment questionnaire! The time has not been excessive and it has facilitated our concentrating on ourselves, which often you don’t get the time to do.”
- “Excellent report captured all the current issues within our department and the city as a whole.”
- “Many thanks to the reviewers for their supportive attitude and for stimulating discussion.”
- “We often feel a bit isolated ... so it was reassuring to learn we’re actually doing quite well!”
- “Already achieved some focus on areas for development, but probably even more crucially has allowed us to resist additional pressure to take on further general internal medicine commitments at the expense of specialty.”
- “Enabled some deficiencies to be highlighted to colleagues in multi-disciplinary teams – i.e. a lever for change.”
- “We have had two new consultants, and one retirement. It was useful to have the review at a time of change to help us prioritise service development.”
- “This has been a very worthwhile experience and is highly recommended. It is non-threatening, constructive and informative, delivered with understanding of what the real issues at the grass roots of clinical care are.”
HOW IS THE PEER REVIEW ASSESSMENT MADE?

Preparation for the visit involves filling in a self-assessment questionnaire about the centre and gathering relevant documents and protocols. The visit then occurs over the course of a day, and is conducted by two experienced clinical endocrinologists and two senior endocrine nurse specialists. The reviewers would be matched as closely as possibly for suitability to the centre. The peer review team will visit the facilities and interview clinical, secretarial and managerial staff and key clinicians of allied specialties. The quality of care is then reviewed according to set standards.

The degree of specialisation of services, the quality of interaction across departments and the ability to work with other endocrine teams locally, regionally and nationally will be assessed, with a strong emphasis on evidence of a patient-centred service. There is an opportunity to compare the data acquired with national statistics to allow benchmarking of structure of services and number of patients seen.

The report is tough and thorough. Not all of the essential standards, and only around half of the desirable standards, have been met by centres that have been reviewed, so there is still work to be done, but there are many examples of excellent practice to celebrate. All reports are confidential, but there is a chance to highlight areas of specialist expertise to enhance collaboration across networks.

LOOKING FORWARD

I am indebted to Petros Perros for leaving solid foundations, upon which I can build with the peer review team. As mentioned above, we have recently conducted a review in Bournemouth, where colleagues found it extremely useful for clinical practice. Plymouth, St Thomas’ Hospital and Chelsea and Westminster Hospital have all expressed an interest in being next. This is, by definition, a collaborative effort and relies on endocrinologists and centres stepping forward to be reviewed and to be reviewers. I have no doubt that there are huge amounts to learn from each other and I look forward to the opportunity to be able to highlight good practice through the individual trusts and the Society for Endocrinology in the future.

If you would like further information about being reviewed or becoming a reviewer please contact Natasha Archer at the Society for Endocrinology (natasha.archer@endocrinology.org) or Antonia Brooke at the Royal Devon and Exeter Hospital (antonia.brooke@nhs.net). See also the Society webpage, www.endocrinology.org/clinical-practice/interdepartmental-peer-review.

ANTONIA BROOKE
Clinical Lead for Peer Review – Endocrinology, Royal Devon and Exeter Hospital, UK
Our annual flagship event is the highlight of the Society calendar. This year we saw 1,100 attendees in Harrogate. A huge number of people take a lot of time planning to make sure we consistently bring you the best cutting-edge endocrinology, for an enjoyable event that runs like clockwork. This is what it takes for each event...

3 years of planning

3,000 hours of organising venue, programme, abstracts, registrations, exhibition, sales, marketing, press, IT, finance

22 hours of committee meetings

Around 200 hours of Programme Secretary time

Based on figures from 2016 event
Around £500,000 of costs, with about £13,000 net cost to the Society (after income from delegate fees and sponsorship)

Based on figures from 2016 event

92 markers and 15 judges for the hundreds of submitted abstracts

Around 150 symposium suggestions

Up to 40 onsite organisers

And also...

3 rolls of Velcro

680 litres of coffee

120 metres of signage

FIND MORE ONLINE
You can get the latest Society events and training information at: www.endocrinology.org/events

SAVE THE DATE
Society for Endocrinology BES 2018
Glasgow, UK, 19-21 November
www.endocrinology.org/events/sfe-bes-conference/sfe-bes-2018
Society grants to boost your LAB SKILLS AND FUND ESSENTIAL EQUIPMENT

PRACTICAL SKILLS GRANT
Your chance to learn, anywhere in the world

“This technique is only carried out in a small number of labs. It was extremely beneficial to spend time in the lab discussing, watching, practising and trouble-shooting.”
Naomi Brooks, University of Stirling (travelled to South Africa)

“It was an invaluable experience, working in different research environments and interacting with colleagues from different specialties, which has led to a new collaboration.”
Douglas Gibson, University of Edinburgh (travelled to Australia)

EQUIPMENT GRANTS
To obtain the tools of your trade

“The equipment was integral to enabling a successful application for a faculty-funded PhD student.”
Adam Sharples, Keele University

“The Equipment Grant has been extremely beneficial in establishing my own research laboratory, and in establishing the necessary methodologies to develop a novel area of research.”
Paul Newey, Ninewells Hospital and Medical School, Dundee

Up to £1,000 to learn a new technique, conduct experiments or attend a workshop

Over £30,000 paid out since 2014

Society members have visited 12 countries WORLDWIDE

2 CHANCES to apply each year: April and October

Apply by 23 May 2018

Up to £10,000 to buy, or part buy, essential lab equipment

Over £49,000 awarded since 2015

The award has enabled my research group to establish research techniques which are essential for the successful completion of our proposed research project, as well as a range of other endocrine-related projects.”
Astrid Hauge Evans, University of Roehampton

As a new lecturer, the Equipment Grant helped me further develop my scientific career as an independent group leader. This grant funded this specific project, but also enhanced the overall quality of my group’s research.”
Javier Tello, University of St Andrews

You can learn more about all Society grants and awards at www.endocrinology.org/grants-and-awards.
The Endocrine Academy is designed to provide clinicians, scientists and nurses with an in-depth programme to help develop their careers and build relationships with those working in the field.

Endocrine Nurse Update is a two-day residential course for specialist endocrine nurses featuring interactive sessions, combined lectures, workshops and networking opportunities.

Clinical Update is a three-day residential course comprising lectures and interactive workshops. The small group workshops (50 delegates maximum) are targeted to specific topics on the curriculum.

Career Development Workshop is designed to meet the needs of basic scientists and clinician scientists, who are investing in building a career in academic research.
Extra special: **ENDOCRINE-RELATED CANCER MARKS RESEARCH MILESTONES**

It’s been a busy time for the Editors of Society journal *Endocrine-Related Cancer*. They’ve been working hard to compile a swathe of special issues, with most focusing on anniversaries of significant discoveries in the field.

The September 2017 issue, guest-edited by Karen Crasta and Ritu Aneja, celebrated 50 years of research on tubulin and cancer. This was swiftly followed by the 20th anniversary of MEN1 in the October issue, guest-edited by Frank Weber and Lois Mulligan. A further special issue on MEN2 is due for February 2018.

The December 2017 issue covers the hot topic of immunotherapy and cancer, in an issue guest-edited by Laura Sterian Ward and Joanne Ngeow.

Finally (phew!), 2018 sees the 65th anniversary of the discovery of the double helix. A special issue will discuss the impact of genomics and new technologies in endocrine cancer research and care, guest-edited by Editor-in-Chief Charis Eng, William Foulkes and Jérôme Bertherat.
KEEP YOUR CAREER SWEET: THE FIRST NATIONAL DIABETES AND ENDOCRINOLOGY TASTER DAY
WRITTEN BY LOUISE HUNTER & SHAZIA HUSSAIN

‘Gastroenterologists drive mud-splattered Land Rovers, cardiologists prefer fast red Ferraris, and nephrologists like amphibious vehicles. But, as an endocrinologist, you can drive all the cars!’

With an amusing yet inspirational speech, Tahseen Chowdhury (London) opened our first National Taster Day for clinical careers in diabetes and endocrinology, which was held in Birmingham in September.

This joint initiative by the Society for Endocrinology and the Young Diabetologists’ and Endocrinologists’ Forum (YDEF) aimed to showcase what’s best about our brilliant specialty. It targeted trainees early in their medical careers.

Preliminary research led by Amar Puttanna (YDEF Chair) has demonstrated that a lack of exposure may deter trainees from considering a career in endocrinology and diabetes.1 Recognising that there are few specialty events geared towards undifferentiated trainees, a group of six registrars with varying sub-speciality interests came together from across the country. They had a common goal in mind: to enhance knowledge of our specialty. To achieve this, they provided a unique opportunity for senior medical students and undifferentiated clinical trainees to see, for themselves, what our job involves.

We offered free attendance to UK students and trainees (foundation and core medical), and are hugely grateful to the local training programme directors and administrators who helped us publicise the event. Although we were unable to reimburse travel expenses, we did offer attendees a free 3-month Passmedicine subscription (www.passmedicine.com), as an added incentive.

THE DAY DAWNS
After months of planning, we were delighted to welcome over 70 delegates to Birmingham’s Queen Elizabeth Hospital on a rainy Saturday morning. Here they gathered under the same roof as expert patients, excited to learn what our job involves.

The day began with a series of short talks, after which the delegates rotated through small group workshops chaired by patients and different healthcare professionals. Activities included:

• learning about a week-in-the-life of an endocrinologist from Claire Higham (Manchester)
• hearing acromegaly anecdotes from John Wass (Oxford)
• meeting Kristen Boelaert (Birmingham) and some of her patients
• experiencing hands-on insulin pump teaching led by Peter Hammond (Harrogate) and his assistant Dipsty the Teletubby
• learning to carb-count with dietician Will Hadfield (London)
• hearing the patient perspective from type 1 diabetes blogger and campaigner Georgia Thomson (Cardiff).

There were also plenty of opportunities for delegates to speak to faculty members about the wide opportunities offered by a career in endocrinology and diabetes to its trainees, which were also covered by a closing talk from Frank Waldron-Lynch (Cambridge).

SWEET SUCCESS
We are still in the process of analysing the formal feedback. However, we are delighted to say that the informal feedback has been extremely encouraging and that one-third of the delegates have already enquired about Society membership. (Hopefully some new members are reading this now!)

While our intention was to inspire our junior colleagues, the infectious enthusiasm left us, as a group of registrars, feeling motivated and recharged ourselves.

We thank the associated organisations for all their support: the Society for Endocrinology, Diabetes UK and the Association of British Clinical Diabetologists. We are grateful for the additional sponsorship secured by the YDEF team, without whom the event would’ve proved difficult to host. We look forward to ongoing support and collaboration, which we hope will allow for future successful events across the country.

Finally, particular mention must be made of Anna Mitchell (former Early Career Steering Group Chair, Society for Endocrinology), Muna Nwokolo (former YDEF Chair) and Amar Puttanna (YDEF Chair), who propelled this idea into motion. We’d also like to extend special thanks to all of our faculty (pictured, plus Ali Karamat (West Midlands) and Tahseen Chowdhury) who so generously gave up their Saturdays to inspire early career trainees – some of whom will be our future specialty colleagues.

If, after reading this, you yourself might consider running a Taster Day, please do get in touch (louise.hunter@doctors.org.uk or shaziahussain@doctors.org.uk).

LOUISE HUNTER & SHAZIA HUSSAIN
Clinical Committee SpR Representatives, Early Career Steering Group

REFERENCE
DAVID’S STORY

‘I was diagnosed with my pituitary condition, empty sella syndrome, in late 2002. My consultant at that time recommended that I should join the Pituitary Foundation. However, due to various circumstances and the pressure of work commitments, I didn’t join the group until 2012.

The Pituitary Foundation supports both patients and healthcare professionals in numerous ways. Over time, I have met many people with a similar condition to my own, or with more severe or varied diseases, but all of us have much in common. Being able to discuss our conditions, treatments or concerns with one another allows us not only to share our experiences, but also to offer support to one another if needed.

Since joining, I have attended many interesting, informative and helpful meetings, expanding my knowledge both of the pituitary and of a holistic approach. The speakers have included a range of healthcare professionals, who have all offered wide-ranging advice about the pituitary and related issues, as well as general health recommendations. Recent topics have included vitamin D and bone health, dynamic function tests and emergency hydrocortisone injection training. It is always helpful to have an update and practical session on the preparation and administration of this vital injection. We have also occasionally had speakers from the Pituitary Foundation itself.

‘Since joining, I have attended many interesting, informative and helpful meetings, expanding my knowledge both of the pituitary and of a holistic approach.’

The sessions have all proved of value not only to patients but also to their carers, who are very welcome at the meetings. We are grateful to all those who give up their Saturday mornings to support us.

As well as the valuable opportunity to share experiences and suggestions with other members before and after the formal part of our meetings, most members also enjoy a social get-together for lunch at a local pub at least once a year. This gives us the chance to get to know one another better.’

A SOURCE OF SUPPORT

The Pituitary Foundation not only raises awareness of pituitary conditions among patients, it also provides information and resources to healthcare professionals, who may not commonly deal with such diseases.

The Foundation achieves this by producing numerous free publications and promoting campaigns to improve detection, care and safety.

‘We encourage all healthcare professionals to signpost patients to the Pituitary Foundation for help and support when diagnosed.’

These include the ‘Know your insipidus from your mellitus’ campaign, which was aimed at accident and emergency staff, nurses and pharmacists working in non-endocrine settings, and highlighted the importance of desmopressin as a life-saving medication for individuals with diabetes insipidus.

Our ‘Get red flagged’ campaign encouraged patients with adrenal insufficiency to register with their ambulance trust so their condition is flagged on the trust’s system. The accompanying factsheet detailed how patients can register, so that if they ever call 999, the call will be flagged for priority attendance by a vehicle carrying emergency hydrocortisone.

This year, we ran a campaign to improve opticians’ awareness of pituitary tumours, to reduce time to diagnosis. Information related to all campaigns, past and present, can be found at www.pituitary.org.uk or by email from campaigns@pituitary.org.uk.

We encourage all healthcare professionals to signpost patients to the Pituitary Foundation for help and support when diagnosed. As David says in his pituitary story here, new members and their carers are always welcome at meetings, and the Foundation is always willing to offer help and support.

MAKING CONTACT

www.pituitary.org.uk
www.facebook.com/pituitaryfoundation
www.twitter.com/pituitary_org

Patient support and information helpline
0117 370 1320 (Mon–Fri 10.00–16.00)
helpline@pituitary.org.uk

Endocrine nurse helpline
0117 370 1317 (Mon 10.00–13.00 and 18.00–21.00, Thu 09.00–13.00)

General enquiries (e.g. publications)
0117 370 1333
enquiries@pituitary.org.uk

The Society for Endocrinology is committed to supporting groups that represent patients with endocrine conditions by facilitating dialogue with the medical community. See https://www.endocrinology.org/outreach/patient-support for a list of groups supported by the Society.
The Society for Endocrinology is delighted to announce that the winner of the Endocrine Nurse Award for 2018 is Janet Lewis, Endocrine Nurse Specialist at the University Hospital of Wales, Cardiff. Janet was chosen for the award because of her leadership in devising recommendations that improve the healthcare provision and equality for patients with neuroendocrine tumours (NETs).

Janet said, ‘We researched the Welsh Cancer Delivery Plan, amongst other documents. This stated that all patients with cancer should have equal access to treatment, regardless of where they lived in Wales, and access to a clinical nurse specialist, of which the NET patients had neither. The effect of these recommendations is that the standard of care that NET patients in Wales receive has improved and become equitable.’

IN THE JUDGES’ WORDS...

‘Janet has demonstrated the power of the Endocrine Specialist Nurse’s voice in supporting patients with NETs. She has networked at a national level with local government and patient support groups, and helped lead change in the support and management of patients in Wales with NETs, with a significant increase in funding and specialist clinicians to provide a quality NET service.’

‘Janet has helped transform a regional/Welsh service for the good of patients, engaging external commissioners and national authority. This is really transformational.’

The Society for Endocrinology’s Endocrine Nurse Award recognises individuals who have demonstrated innovative and successful nurse-led initiatives in the endocrine field that have advanced best practice in research, education or patient care.

If you have a nurse colleague that you would like to nominate for the 2019 Endocrine Nurse Award, remember that applications are now open until 29 June 2018. See www.endocrinology.org/grants-and-awards/prizes-and-awards/endocrine-nurse-award.

2018 ENDOCRINE NURSE AWARD WINNER

WINNER

The Society is delighted to announce that the winner of the Endocrine Nurse Award for 2018 is Janet Lewis, Endocrine Nurse Specialist at the University Hospital of Wales, Cardiff. Janet was chosen for the award because of her leadership in devising recommendations that improve the healthcare provision and equality for patients with neuroendocrine tumours (NETs).

Janet said, ‘We researched the Welsh Cancer Delivery Plan, amongst other documents. This stated that all patients with cancer should have equal access to treatment, regardless of where they lived in Wales, and access to a clinical nurse specialist, of which the NET patients had neither. The effect of these recommendations is that the standard of care that NET patients in Wales receive has improved and become equitable.’

IN THE JUDGES’ WORDS...

‘Janet has demonstrated the power of the Endocrine Specialist Nurse’s voice in supporting patients with NETs. She has networked at a national level with local government and patient support groups, and helped lead change in the support and management of patients in Wales with NETs, with a significant increase in funding and specialist clinicians to provide a quality NET service.’

‘Janet has helped transform a regional/Welsh service for the good of patients, engaging external commissioners and national authority. This is really transformational.’

The Society for Endocrinology’s Endocrine Nurse Award recognises individuals who have demonstrated innovative and successful nurse-led initiatives in the endocrine field that have advanced best practice in research, education or patient care.

If you have a nurse colleague that you would like to nominate for the 2019 Endocrine Nurse Award, remember that applications are now open until 29 June 2018. See www.endocrinology.org/grants-and-awards/prizes-and-awards/endocrine-nurse-award.

THE ENDOCRINOLOGIST | WINTER 2017 | 29
SAVE THE DATE

Endocrine NURSE UPDATE

16–17 April 2018
Hilton Birmingham Metropole
NEC, BIRMINGHAM, UK

Aimed at both established and new-to-post nurses, the event focuses on best practice and the latest developments in the field. This is an annual two-day residential training event for specialist endocrine nurses featuring interactive sessions, combined lectures, workshops and networking opportunities.

RCN ACCREDITED

This programme has been accredited by the RCN Centre for Professional Accreditation until September 30th 2018. Accreditation applies only to the educational content of the programme and does not apply to any product.
Images in **ENDOCRINOLOGY**

Here is the latest highlight from our journal Cover Art Competition, showcasing the best images in endocrinology.

COVER IMAGE FROM JOURNAL OF ENDOCRINOLOGY

DECEMBER 2017

The images depict some key molecular determinants of corticotrophin-releasing hormone (CRH) signalling in the hypothalamus of laboratory rodents and humans. In mice (left), secretagogin co-exists with neither oxytocin nor vasopressin. In contrast, a subset of vasopressin-positive and oxytocin-positive neurones can co-express secretagogin in rats (centre) and humans (right) (red, secretagogin; green, vasopressin; blue, oxytocin). From Romanov et al. 2017 *Journal of Endocrinology* 232 R161–R172. Credit: RA Romanov, T Harkany (Medical University of Vienna, Austria), A Alpár (Semmelweis University, Budapest, Hungary), T Hökfelt (Karolinska Institutet, Sweden).

Enter our Cover Art Competition for *Journal of Endocrinology, Journal of Molecular Endocrinology* and *Endocrine-Related Cancer*.
AVAILABLE TO PRESCRIBE PRIVATELY

HELP YOUR PATIENTS WITH OBESITY BREAK FREE FROM HUNGER AND CRAVINGS 1-5

Mysimba\(^{\text{®}}\) (naltrexone HCI/bupropion HCI) 8mg/90mg Prolonged-Release Tablets

A new dual approach that targets the CNS pathways helping your patients with obesity to achieve significant weight loss 1-5

Mysimba is indicated, as an adjunct to a reduced-calorie diet and increased physical activity, for the management of weight in adult patients (≥18 years) with an initial Body Mass Index (BMI) of either (1) ≥30 kg/m\(^2\) (obese), or (2) ≥27 kg/m\(^2\) to <30 kg/m\(^2\) (overweight) and with one or more weight-related co-morbidities. Discontinue treatment after 16 weeks if patients have not lost at least 5% of their initial body weight. Discontinue treatment after 16 weeks if patients have not lost at least 5% of their initial body weight. Discontinue treatment after 16 weeks if patients have not lost at least 5% of their initial body weight. Discontinue treatment after 16 weeks if patients have not lost at least 5% of their initial body weight.

Mysimba is contraindicated in patients with a history of mania.

Indications:

1. Obesity: Mysimba is indicated, as an adjunct to a reduced-calorie diet and increased physical activity, for the management of weight in adult patients (≥18 years) with an initial Body Mass Index (BMI) of either (1) ≥30 kg/m\(^2\) (obese), or (2) ≥27 kg/m\(^2\) to <30 kg/m\(^2\) (overweight) and with one or more weight-related co-morbidities.

Elderly patients (over 65/uni00A0years):

Use with caution. Not recommended in patients over 75 years of age.

Paediatric population:

Should not be used in children and adolescents below 18 years.

Methods of administration:

Swallow tablets whole with water and preferably with food; do not cut, chew or crush.

Contraindications:

Hypersensitivity to active substance(s) or to any of the excipients.

Undesirable effects:

Very common (≥1/10): Anxiety; insomnia; headache; restlessness; abdominal pain; nausea; constipation; vomiting; arthralgia; myalgia. Common (≥1/100 to <1/10): Lymphocyte count decreased, hypersensitivity reactions. e.g. urticaria, decreased appetite; irritability, affective disorders; depression; dizziness; tremor; dysgeusia; disturbance in attention or concentration; lethargy; lacrimation increased; tinnitus, vertigo, palpitations; electrocardiogram change; hot flush; chest pain; dry mouth, toothache, diarrhoea, abdominal pain; upper; hyperhidrosis; pruritus, alopecia, rash, sweating; ejaculation delayed; feeling jittery; energy increased; chills; fever.

For a full list of adverse events please consult the summary of product characteristics.

Legal classification:

For full prescribing information see Summary of Product Characteristics (SmPC).

Orexigen Therapeutics Ireland Limited, 2nd Floor, Palmerston House, Fenian Street, Dublin 2, Ireland. Further information is available on request from: Consilient Health (UK) Ltd, No.1 Church Road, Richmond upon Thames, Surrey TW9 2OE or Mysimba@druginfo.com. Job Code: UK/MYS/0417/0066 Date of preparation of PI: April 2017

Adverse events should be reported. Reporting forms and information can be found at www.mhra.gov.uk/yellowcard. Adverse events should also be reported to Orexigen*:

0800-051-6402 or Mysimba@druginfo.com

References

FOR MORE INFORMATION VISIT WWW.MYSIMBA.CO.UK

UK/MYS/051/00074d Date of preparation October 2017